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PREFACE

Under the Urban Mass Transportation Administration (UMTA)
Urban Rail Systems Program, Transportation Systems Center (TSC)
is providing support to the Office of Technology Development
and Deployment of the Urban Mass Transportation Administration.
Under this program, TSC is responsible for the conduct of
research, development and evaluation activities in support of
the improvement of performance and reduction of cost of urban
transit systems. The Wheel/Rail Dynamics Project being conducted
as part of this program is directed toward the development of
technical data that can be applied to improve performance speci-
fications for transit car trucks and components to permit reduc-
tions in maintenance costs and wheel/rail noise while providing
acceptable ride quality and safety. In order to define the
potential improvement achievable in curving performance of tran-
sit trucks, a Iimiting value analysis is»performed on current
and candidate truck configurations to establish bounds on the
expected curViﬂg performance. The results of this analysis are

presented in this document..
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NOMENCLATURE

£ = creep coefficient (linear theory)

F = lateral force

Pg = lateral flange force

h = ratio of wheel base to track gauge

K = stiffness of spring loaded stop for parallelogram truck

Kw = bending stiffness of radial truck

L = half of track gauge

M = moment

N = normal force on wheel

P = net lateral (centrifugal) force

q = half of total flange clearance

T, = nominal wheel radius of wheelset

R = curve radius

Vv = truck velocity

W = total load

y = lateral displacement of axle from track centerline

a = wheel conicity

B,y = orientation of resultant creep force on leading and trail-
ing wheels

i = wheel/rail coefficient of friction

Y = yaw angle of truck with normal to curve

VA = deviation in yaw angle, from h¢/R, of parallelogram truck

) = warping angle of parallelogram truck

Subscripts

L = lateral

R = resultant

T = tangential

1,2 = leading and trailing axle, respectively.
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SUMMARY

Under the UMTA Urban Rail Systems Program, TSC is conducting
research and development activities for improving performance and
reducing the cost of urban rail transit systems. The Wheel/Rail Dy-
namics Interaction Project being conducted as part of this program
is directed toward reduction of maintenance costs and wheel rail
noise while providing acceptable ride quality and safety. A sig-
nificant part of this effort is directed toward determining design
alternatives for providing improved curving performance of transit
trucks. Some current designs have used a high interaxle stiffness
to permit high speed performance without inducing hunting oscilla-
tions. In recent years, several truck designs have been advocated
to improve steering capability during curve traversal by either pro-
viding direct interconnections between axles (radial trucks) or
providing connections through linkages between the axles and car-
body (guided steering). This document predicts bounds for the
flange forces and wheel/rail forces of limiting case transit
truck configurations to provide an estimate and comparison of the
benefits in curving performance that can be achieved by modified
truck configurations. These limiting configurations include:

1. Ideal rigid truck

2. Ideal parallelogramming truck

3. Ideal radial (self steering) truck

4, Ideal guided steering truck

5. Compensating guided steering truck

viil



The ideal rigid truck is a model for some configurations used in

passenger and transit applications. The two wheelsets are inter-
connected by a rigid primary system so that relative motion

between the wheelsets cannot occur. The ideal parallelogramming

truck is modeled with pinned connections between the interwheelset
connections and the wheelset axles, which is a limiting case of
zero shear stiffness. This configuration is statically stable on
the track under the forces generated during curving until the
flange clearance is taken up by both axles. In order to maintain
static stability for sharper curves, spring loaded stdps can be
used. These stops are modeled as torsiomal springs rather than
pins and allow a shearing (warping) action to occur between the
axles. This parallelogramming action of the truck is typical of
freight car trucks.r Certain types of passenger car trucks, such
as those with an equalizer bar assembly, also tend to behave in a

parallelogram fashion. A self-steering truck is a truck with

wheelsets that tend to align themselves with the instantaneous
curve radius. These trucks use compliance between the axles to
develop a yaw angle between the axles. This complianée typically
involves a relatively low bending stiffmess and relatively high

shear stiffness. The ideal radial (self-steering) truck is the

limiting case of zero bending stiffness and infinite shear stiff-

ness. A guided steering truck uses linkages between the axles

and the carbody to force a yaw angle between the axles for better
alignment during curving. The ideal guided steering truck or
"perfect" guided steering truck is a limiting case with rigid

linkages and the axles aligned radially. A compensating guided

ix



steering truck uses rigid linkages to align the axles to obtain

desired effects. By aligning the axles radially in the creep
guidance region, and then in an oversteered configuration when
the high rail is reached, this truck can traverse a curve of
arbitrary radius without any flange force occurring.

For all cases in this document the wheel profiles are modeled
by conical wheel treads with vertical wheel flanges. The track is
smooth, free of all irregularity and provides single point contact
to the wheel. For balance speed conditions three curving regions
are investigated, creep guidance (no flanging), free curving
(flanging on lead outer wheel), and constrained curving (flanging
on both lead outer wheel and trailing inner wheel). The varia-
tion of wheel/rail force and flange force with curve radius is
analyzed, including the effects of creep force saturation and
gross sliding.

A comparison of the wheel/rail forccs and the flange force
for all five trucks in steady state curving is presented. The

analysis is based on a conicity of 0.2 and a flange clearance of

0.405 inches. For the parameters used, the following relative

comparisons can be made between the ideal trucks analyzed.

a) Only the two types of guided steering trucks analyzed
are capable of steady state curving without any wheel/rail force
(for the region: radius R greater than 435 feet).

b) In terms of limiting wheel/rail force on the high rail

for R<435', the rigid, parallelogram and guided steering trucks

produce about the same force levels (within 5% of 1.8 uN). The



compensating guided steering truck and ideal radial truck have a
limiting wheel/rail force on the high rail that is a factor of
three less than the levels of the other trucks. For R>435', the
parallelogram truck has a maximum wheel/rail force of 1.0 uN.

c) In terms of limiting flange force, the trucks produce

about the same force level (Fg = 2.7 uN), except for the compen-
sating guided steering truck and ideal radial truck which tra-
verse the curve without flangirig by adopting an oversteered
position of the axles. For R>435', the parallelogram truck has
a maximum flange force of 2.0 uN.

d) In terms of the track curvature that the trucks can
traverse without force saturation occurring, the trucks can be
ranked from lowest to highest curvature as parallelogram, rigid,
Aguided steering, compensating guided steering and radial. The
parallelogram truck reaches a radius of about 1000 feet when
saturation occurs, whereas the compensating guided steering truck
and ideal radial truck can traverse a curve with a radius as low

as 217 feet before force saturation occurs.
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1. INTRODUCTION

Current truck designs for transit applications have concen-
trated on ease of assembly, minimization of moving parts and use
of relatively rigid structural members in an effort to ensure
reliability and maintainability. Some designs have used a high
interaxle stiffness to permit high speed performance without in-
ducing hunting oscillations. In recent years, several truck
designs have been advocated to improve steering capability during
curve traversal by either providing direct interconnections be-
tween axles (radial trucks) or providing connections through 1link-
ages between the axles and carbody (guided steering).

In order to optimize curving performance, truck designers
must consider the effects of many interacting parameters. Among
truck parameters are wheel taper, inter-axle distance and stiff-
ness, angle of attack in curving, flange clearance and frictional
elements. Rail and track parameters include rail wear, curve
radius and environmental conditions. The wheel/rail interaction
forces and slip/force saturation behavior link the truck and rail
parameters, and are important factors in establishing overall
performance. Analytical studies which include many of these
parameters and also present the results of the mechanics of curve
negotiation in a closed form relationship provide a useful service.
Design choices involving preliminary trade-offs and parameter
optimization for minimization of curving forces can then be made
quickly without the need for detailed, and possibly costly, com-

puter codes.



This document predicts the upper bounds of the flange forces
and wheel/rail forces of limiting case transit truck configurations
in a closed form relationshop to provide an estimate of the bene-
fits in curving performance that can be achieved by modified truck
configurations. These limiting configurations include:

1. TIdeal rigid truck

2. Ideal parallelogramming truck

3. Ideal radial (self steering) truck

4. 1Ideal guided steering truck

5. Compensating guided steering truck.

In all cases the wheel profiles are modeled by conical wheel
treads with vertical wheel flanges. The rail is modeled as
perfectly smooth, free of all irregularity and provides single
point contact to the wheel. For balance speed conditions three
curving regions are investigated, creep guidance (no flanging),
free curving (flanging on lead outer wheel), and constrained
curving (flanging on both lead outer wheel and trailing inner
wheel). The variation of wheel/rail force and flange force with
curve radius is analyzed, including the effect of creep force

saturation and gross sliding.



2. RIGID TRUOUCK

The rigid truck shown in Figure 1 is typical of configurations
used in passenger and transit applications. The two wheelsets are
interconnected by a rigid primary system so that relative motion
between the wheelsets cannot occur. The governing equations for
analyzing any truck in steady state curving are based on a balance
of forces and moments. The total lateral truék force, including
any net external force P, is zero. For negligible centerplate
friction (a good approximation for most modern transit trucks),
the total moment on the truck is zero. The rigid truck is
analyzed in Reference [1], and the solutions of the truck equili-

brium equations for the flange forces are (assuming fL = fT)Z

_ 5 -
_2f 1+h") g o p
Fg, T H Lol - |t g (1)
L o -
o 2 -
=2:E M-ﬂ_ _P
ng h | R T, 2£y 2 (2)

For the creep guidance range (no flange contact) the wheel/
rail forces are fhi/R-P/4 for the wheels of the lead axle and
- fh2/R-P/4 for the wheels of the trailing axle. The free curv-

ing region (flanging on lead outer wheel only), defined by

=q, ¥y =q - hey, F_ =0,
Y1 =4, Y =4 v g, (3)

occurs for

-2
(i+h )ro

R < ;ZE_:_ﬁﬁf (4)

[ 4f
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FIGURE 1. RIGID TRUCK IN STEADY~STATE CURVING
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and the lead axle wheel/rail forces are

leading axle outboard = - F + f (h& + ¢>
g1 R
3 £ _ P
T (5)

leading axle inboard

1
}—h
T
ib“
)
+
=

R
_ 1 fhe _ P,
S e i
with the flange force
F = 4fYy + P
g1 v
2 SL_ocq
(1+h7) g - + Pal/r. )
= Af °1 - o . (6)
ol T- o/t
hl‘-r— ]
o

For the constrained region, characterized by flanging on the

lead outer wheel and trailing inner wheel, the yaw angle ¥ reaches
its maximum value Voax which is fixed by the track geometry,

V=1

max

(7)

q/hs,

and the force levels may be found in the same manner as in equa-
tions (1) - (2). Using (7) the constrained region for the rigid
truck occurs for
2
R (i+h™) g, (8)
(2o

[ 4t

The previous results hold only for the case of no wheel

slipping (sliding). However, the maximum value that the resultant



force can acquire before saturation occurs in uN where p is the
friction coefficient and N is the wheel load. It is assumed that
once a wheel slips, the resultant force is aligned with the re-
sultant creep velocity. Typically the lead axle will slip in the
free curving region. As the constrained curving region is
approached, force saturation occurs on both the leading and trail-
ing wheels and the lead axle forces then tend to be independent of
curve radius. In this report, the investigation of the limiting
force levels on the wheels of the lead axle is done with the
assumption of slipping of both the front and back wheels in the
free curving region at balance speed conditions P=0.

Sliding forces for the rigid truck are shown in Figure (2)
with the orientation of the forces defined by the orientation of
the equivalent creep forces. Solving (1) for this rigid truck

sliding condition in the free curving region* leads to

Fg = 2uNsing + 2yNsiny, (9a)
1

2uNsiny= %y (cosB + cosy) . (9b)

The yaw angle ¢ is determined from an iterative solution of the
transcendental equation (9b), where the orientation angles at the

leading and trailing axles, B and y, respectively are defined as

_ -1 (hg /R) +
B = tan = oop— ocq/lgo (10)
y = tan 1 (he /R) - g

L/R - & (q-2hgy)
(o]

*
An alternative derivation based on sliding forces in the con-
strained region is presented in Appendix A.






The calculation of the flange force Fgl then follows from (9a).
Following Figure 2, the lateral wheel/rail forces are,
Lateral W/R Force (Lead Outboard Wheel) = Fg - uNsing

1 (11)
Lateral W/R Force (Lead Inboard Wheel) = uNsinpB.



3. PARALLELOGRAM TRUCK

The ideal parallelogram truck is modeled with pinned connec-
tions between the axles leading to a limiting case of zero shear
stiffness (Figure 3). The parallelogramming action of a truck
is typical of freight car trucks. Certain types of passenger car
trucks, such as those with equalizer bar assembly, also tend to
behave in a parallelogram fashion. The pinned -configuration 1s
stable on the track under the forces generated during curving
until the flange clearance is taken up by both axles (Rzroi/aq).
In order to maintain static stability in the free curving region
for still sharper curves, spring loaded stops can be used. These
stops are modeled as torsional springs (Figure (5)) rather than
pin connections and allow a shearing (warping) action, defined by
the angle ¢, to occur between the two axles.

As shown in Figure 3, the lead and trailing axles are sub-
ject to the (same) yaw angle ¥ and, in addition, the entire truck
can warp through the angle ¢. Applying equilibrium relatiomns
balancing forces and moments and assuming negligible centerplate

friction yields

- he
Fgl = 2f (—R— : > + P/2, (12a)

- he _ 3
ng 2f <R ) P/2 , (12b)

4f2 Z _ ZfOL + . 13
(sz + pg1> = <1+h ) BT, (yq*yp)e  (13)

It follows from (12a) and (12b) that the creep guidance case of
®
steady state curving without flange contact is not possible, i.e.,

flanging always occurs.

2For Pg1= 0, ¥ = -h2/R and for Fg2= 0, y = + he/R.



y1 = ythe(o+y)<q
yz = Y-hl(db*lb)

N\

ng P/2
Warping Angle ¢ Yaw Angle ¢

(3a) Creep Forces

Y174 High Rail ¥1=9
— —_— YVpul_ e T~ I
-~ N
N\
y2='q
I —_— —— T T — ——
Tangent Track - Low Rail ™~ 7T 1Y, =~
e =r 2/0q ~
—— 3= Decreasing Curve Radius —p - -

(3b) Effect of Curve Radius on Position of Truck

FIGURE 3. PARALLELOGRAM TRUCK WITH PINNED CONNECTIONS
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In the free curving regime, defined by

=q, F_ =0 14
Y1 1 g, (14)

solution of (12) yields

Y.Zrol
Yo T Q4 + oR (15)

This relationship shows that as the track radius decreases, the
rear axle moves towards the high rail, as shown in Figure (3b).
When Y,=4, the fiange clearance available for the trailing axle
is completely taken up and the radius becomes, Rc=ro£/aq. An

equilibrium solution for the free curving case is possible only

if R>r02/mq with

T I i (16)

leading axle outboard = - + f(E& + > (17)
g1 R
_ hg P |
= 2f ® "7
. . _ hge
leading axle inboard = £ 7tV (18)
hg P
= U7 -7

If force saturation occurs within this range of R>Rc’ then
the limiting force levels for the parallelogram truck are deter-
mined from an analysis of the case when slipping occurs on wheels
of the leading axle. These sliding forces are shown in Figure (4)
with the orientation defined by the creep forces. In order for

the trailing wheelset to balance in equilibrium (without flanging)

11
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the wheel/rail forces must be purely longitudinal and the trailing
wheelset adopts the radial position

_hs,

P & (19)

The sliding forces on the leading axle are oriented at the angle

B, where
_ -1 2h&/R .
g = tan T g (20)
R T
0

The lateral wheel/rail forces on the leading axle are
Lateral W/R Force (Lead Outboard Wheel) = Fgl - uNsing
(21)
Lateral W/R Force (Lead Inboard Wheel) = uNsing-.
The maximum value that the flange force can attain occurs when
the lead saturation force is aligned laterally, i.e., B = 90°.

This occurs when R = roz/uq (equation (20)) and produces a lead

axle flange force Fg = 2uN.
1

For R<R_, equilibrium cannot be maintained in the free curv-
ing regime unless spring loaded stops are used to prevent collapse
of the truck. These can be modeled as torsional springs as shown
in Figure (5) and permit a finite shearing (warping) actiomn to
occur between the axles as defined by the angle ¢. In order to
ensure the stability of the truck in a free curving equilibrium
condition, the springs must have a minimum value of stiffmness K.
Appendix B, shows that

K > hof (22)
is a minimum requirement for obtaining a stable equilibrium condi-

tion to prevent collapse of the parallelogram truck.

13



If force saturation occurs on the parallelogram truck with
spring loaded stops within the region R<R., a limiting value of
the flange force and wheel/rail force is obtained from an analy-
sis involving saturation on both the lead and trailing axles.
Sliding forces (Figure 5) are oriented by the equivalent creep
forces in a similar manner to that for the rigid truck. Sliding
in the free curving region under balance speed conditions (P=0)
leads to the identical equations as for the rigid truck, (9a)

and (9b) where now the angles Band y are defined as

* *
tang = %—iggéig , tany = 2 = L . (23)
T ;; T ?; (q-2he(o+v*))

In this expression, y* is defined as the deviation of the axle
from the yaw position defined in equation (19). For a given value
of shear angle ¢ the yaw angle 3* for this warped truck is deter-
mined from an iterative solution of the transcendental equation

(9p). The calculation of the flange force Fg then follows from
1

(%9a). The lateral wheel/rail forces on the lead axle are given

by the expressions in (21).

14



4. IDEAL RADIAL (SELF-STEERING) TRUCK

A self steering truck has wheelsets that tend to align them-
selves with the instantaneous curve radius. These trucks use
compliance between the axles to develop a yaw angle between the
axles, as shown in Figure 6. This compliance typically involves
a relatively low bending stiffness and relatively high shear
stiffness. The ideal radial (self steering) truck, is the limit-
ing case of infinite shear stiffness (KY " o) with zero bending

stiffness, K

.

A complete solution is obtained by applying the equilibrium
relations to the leading and trailing segments of the truck (parts
I and II, respectively, on Figure (7a)). In this derivation a

finite bending stiffness K, is included, and the ideal radial truck

Y
is obtained in the 1limit as KW + 0. The equilibrium relations are
_2 a9 ] p K 2K,
Fo, THR T T [T 7w W o ¥
(243)
_2e s W] P, 5 Ky
fo, TR R T T, | T2 7 R W)
= hg _ he
Yi =Yy - RAF - v) sy, =y - R T e, s (24b)

where by and ¥, are yaw angles defined in terms of deviations from
the pure radial position. Overall equilibrium is maintained by

the relationship

F - F = - 2f <w1 + w2> - P, (25)

15



Ky = Shear Stiffness, Kw= Bending Stiffness

FIGURE 6. FLEXIBLE TWO-AXLE TRUCK ASSEMBLY
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\@\ p/2 Track Centerline

=
=|2

(7a) CREEP FORCES FOR RADIAL TRUCK

2Thiy

(7b) FREE BODY DIAGRAM IN FREE CURVING REGION

FOR IDEAL RADIAL TRUCK (KW -~ 0)

FIGURE 7. RADIAL (SELF-STEERING) TRUCK
(wl AND 12 MEASURED FROM RADIAL POSITION)
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as long as sliding does not take place.

The creep guidance case for the ideal radial truck is ob-

tained from these equations with F = 0, F = 0 and KW = 0.
g1 g2

Solution of equation (24) and (25) leads to

Y1 = Yoo (26)
which implies that the truck has no preferred lateral position.
A more refined analysis shows that equation (26) represents an

equilibrium state that is not unique. For any non-zero bending

stiffness K, > 0, a unique solution can be found, in the form

v

[ 2\ Tt
<1+h)&—§—, Y, =V (27)

he2/R, wz = - h4/R.

71
¥y

For this creep guidance range, the radial truck traverses the

curve with the same lateral excursion as the rigid truck, Ref. [1],

and the bending spring KW remains undeformed.
The free curving region defined by (14) occurs for

(1 1),
RS og ,Pol /7 _RETY (28)
A ¥ < )

Solving the equations of motion with finite bending stiffness in
the free curving region, in which the lead wheelset flanges

against the high rail, produces

a1 )
F_ = 4f | - ~2 Lo—s (29
&1 nfp - o&) , oh™e’f ] . o), oht’f
T K, r T K1
0 P o o) Y o
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Both the expression for the free curving region and the lead axle
flange force, reduce to the respective rigid truck results [(4),
(6)1 when K¢ " o, Further results related to the curving per-
formance of the radial truck with finite bending stiffness may be

deduced from Reference [2]. Solution of the equilibrium equations

also yields information on yaw angles and displacement, as follows

1'.‘
r

g )
_1fea _ 2 1, ) _ 2 (]t
by '»E'<?; R> il <2 T it T,
_ L L - (30)
by = 7 g 7 Zf(?gl P>

_ he [» o).
V279 2\ gy P)

Based on the relations in (27) and (39) the behavior of the radial

truck with finite bending stiffness can be ascertained as a func-
tion of curve radius, R. For the creep guidance range with
balance speed condition, P = 0, both wheelsets have the same lat-
eral displacement. Decreasing the curve radius R, leads to an
increase in lateral displacement. When the high rail is finally
met, i.e., flange clearance is taken up, the lead axle flanges

and the trailing axle moves away from the high rail towards the
low rail. The wheel/rail forces build up with decreasing radius
and typically force saturation occurs somewhere between the radius
defined for free curving and that for constrained curving.

The behavior of the ideal radial truck (Kw -~ 0) with decreas-

ing curve radius is quite different from the behavior for finite

KW' When the truck reaches the high rail a flange force is not

19



built up (i.e., F ~ 0, K
P ’ g1 15

For smaller curve radius the truck moves along the high rail and

+~ 0) for balance speed conditions.

offsets the increasing track curvature by orienting the axles to
an oversteered position. The positions of the axles are defined

in (30) by

-1 faq _ 2 - -
‘Pl‘h(ro R) by = - v, S
for the balance speed curving where the yaw angles ¥, and ¢, are

defined from the radial position. The axles adopt an over-steered
orientation for
R < roﬂ/aq- (32)
A typical force diagram for this orientation is shown in Figure
(7b). For curving with lateral imbalance loads (P > 0), the net
load P is shared equally by both wheelsets by flange forces at
both wheelsets on the high rail.
The wheel/rail forces on the ideal truck build up as the
radius of the curve decreases. The resultant saturation force
is oriented in the direction of the resultant creep force. Based
on the orientation shown in Figure 7b, the sliding forces on each
axle are oriented at the angle B, where
8 = tan ! 1/h (33)
The lateral wheel/rail force on the wheels of the leading and
trailing axles 1is
Lateral W/R Force = uNSinB (34)

The maximum value of lateral W/R force is 0.58uN.
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5. IDEAL GUIDED-STEERING TRUCK

A guided steering truck uses linkages between the axles and
the carbody to force an angle between the axles for better align-
ment during curving. The ideal guided steering truck or "perfect”
guided steering truck is a 1limiting case with rigid linkages and
the axles aligned radially, as shown in Figure 8. (The terms
"oversteered" and "understeered" refer to cases where the angle
between the interwheelset connection and the axle is greater than,
or less than, respectively, the radial alignment angle hgt/R.)

Applying equilibrium relations balancing forces and moments

leads to
o2 2[2 + 2f0 + B
g, R |R - T_ 7 LA (35)
1 | o
_2f[8 _ o P (36)
F -——————y]—fo,b-—,
g, h |[R 1 2

which is identical to the flange force relations for the rigid
truck (equatiomns (1), (2)) except for the (l+h2) factor multiply-
ing 2. In the creep guidance range, the lead and trailing axles
are aligned perfectly with radial lines from the center of curva-
ture of the curved track. For balance speed conditions (P=0) the
truck moves along the rolling line offset position for pure

rolling with zero yaw angle,

rol
Y=g » ¥=0. (37)

The creep forces are zero and the axles are aligned radially.
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(8a) Original Geometry of Truck
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yp = yhey ’ Yp=y-hiy

(8b) Truck in Yawed Position with Forces Acting

FIGURE 8. IDEAL GUIDED-STEERING TRUCK
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The free curving region defined by (3) occurs for

R« ——2 e (38)

which is a factor of (1+hz) less than the radius required for a
rigid truck (equatiomn (4)). Solving equations (35),‘(36) the lead

axle wheel/rail forces are (Figure 8)-

Lead W/R Force Outboard = - Fg + £
1
- _ =z _ P -
= - 3/4 Fg 1 (39)
Lead W/R Force Inboard = £
- _ P
= 1/4 Fg 1 (40)
with the flange force
F = 4f) + P
g1 v
L oq
R T Plal/T
= 4f ° - < 0) : (41)

The constrained region for the guided steering truck defined

by (7) occurs for

L

(3+%)

R < (42)

and flange contact occurs on both the leading and trailing axle.

For the truck with ideal guided steering and rigid linkages,

flanging on the lead axle and also sliding on both the leading

23



and trailing axle, equations defining the balance of forces and
moments are the same form as for the rigid truck (9a) and (9b)-

The angles B8 and y are now defined by

R T jarzhiv) (43)

tang = Y tany = ( OLIP

2 o ’
F- )
(R ro

The yaw angle ¢y is determined from the transcendental equation
(9b) and the calculation of the flange force Fg follows from

1
(9a). From Figure 8, the lateral wheel/rail forces are

Lateral W/R Force, Lead Outboard Wheel

F - uNsinB
g1 H

Lateral W/R Force, Lead Inboard Wheel

uNsing. (44)
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6. COMPENSATING GUIDED-STEERING TRUCK

A compensating guided steering truck (Figure 9) uses linkages
between the axles and the carbody to set an appropriate angle be-
tween the interwheelset connecting bar and the axle to obtain
desired results. For example, by properly oversteering this type
of guided steering truck, éteady state curving can be maintained
without flange force.

The analysis is carried out in a similar manner to the analysis
in Section 5 for the ideal guided steering truck. Due to the im-
portance of the creep coefficients in fixing the correct amount of
oversteering, the analysis is done with the lateral creep coeffi-
cient fL distinct from the tangential creep coefficient fT' Apply-
ing a balance of forces and moments to the truck free body diagram
shown in Figure (%), where the angles ¢ and ¢, are measures of

the deviation of the axles from the radial position, leads to

[

- L + .
Pgl = ~—11—' —R' ro y:l g ZfL('(p Cbl) + P/Z:
- (45)
28 [
T} & o ' :
F i~ . - e - 2f.(p+¢,) - P/2,
) h LR T, } L 2
In the creep guidance region, the solution of (45) leads to
T £
0 L h - P_.
YT OR 7 (ro E)(‘bfd’z)’ VT oEE (46)

For balance speed conditions with the axles aligned radially, the
truck moves along the rolling line offset position for pure roll-

ing with zero yaw angle
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(9a) Free Body Diagram of Compensating
Guided Steering Truck

2hg

2f, heo X/ \Z 2f, hig
.0

.F

-

L

(9b) Truck in Steady State Curving Without
Flange Force

FIGURE 9. COMPENSATING GUIDED STEERING TRUCK
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T &
y=—g s ¥ =0 , ¢ =0, =0 | (47)

The creep forces are zero and the axles are aligned radially, lead-
ing to the same solution for the creep guidance region as for the
ideal guided steering truck, equation (38).

The truck will reach the high rail when Y1 = 9 which pro-

duces a radius

. 4
R < 0 ) , (48)

P
OL<q+A—fh,Q,

for the truck to remain at the high rail. 1In order for the truck

to traverse the curve at the high rail with zero flange force

while maintaining force and moment equilibrium, it is necessary
for the angle ¢ to be set correctly. Following Figure 9, for
balance speed conditions, the oversteered condition required for

steady state curving of the truck without flange force is

T
¢1='1-’“E[%%'%]’¢2=¢1¢:0' (49)

For the case of equal creep coefficients in the lateral and tangen-
tial directions, this oversteering condition is equivalent to the
oversteering condition required by the ideal radial truck for
curving without flange force (31).

The wheel/rail forces on the truck build up as the radius of
the curve decreases. The resultant saturation force is oriented
in the direction of the resultant creep force. As shown in
Figure 7b this orientation is independent of radius and is defined
by

£
tanp = H%Z , tany = tanB. (50)
27



The lateral wheel/rail force on the wheels of the leading and

trailing axles is
Lateral W/R Force = uNsinB. (51)

For the case with equal lateral and tangential creep coefficient,

this lateral component of the saturation force is .58uN.
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7. NUMERICAL RESULTS

A comparison of the wheel/rail forces and the flange force
for all five trucks in steady state curving is shown in Figures
8 and 10 at balance speed conditions. These results are based
upon the dimensions of a high conicity transit truck with the
parameters

o = .2, g = .405", T, = 15", ¢ = 28.2", h = 1.41,

P =0, u=0.5 W=100,000"

(52)

In order to derive first order values for the forces, an estimate
of the creep coefficient is needed. An approximate value for the
creep coefficient in the linear range is about 150 times the wheel
load. Since we are dealing with large creep, a value of about 75
times the normal force is probably more appropriate. The creep
coefficient, assuming a 100,000# car weight with two trucks and

an equal weight distribution, is then

£ ISW
(53)

9.375 x 105 #.

It should be emphasized that the results presented in this
work are limiting values based on the assumption of sliding of the
wheels on both the leading and trailing axles, along with the
assumption of flanging on the lead outer wheel.A Although other
analytical assumptions could lead to more refined results, parti-
cularly with respect to variation of force levels with radius in
the force saturation region, the results are én upper bound to the
force levels for trucks in steady state curving on track without

any irregularities. It also should be noted that the trucks
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analyzed in this report have a dynamic instability characterized
by zero critical speed. However, the results of this analysis
will enable designers to establish parameters for minimization of
curving forces. Design choices involving tradeoffs between
curving forces and dynamic stability are addressed in Reference
[2].

The lateral lead axle wheel/rail forces are shown in Figures
10 and 11. Except for the compensating guided steering truck and

the ideal radial truck, the limiting sliding values of the wheel/

rail forces are within 10 percent of 0.9 uN on the low rail and
within 5 percent of 1.8 uN on the high rail. The compensating
guided steering truck and ideal radial truck, which traverse the
curve without flanging by adopting an oversteering orientation
have limiting sliding forces of 0.58uN on both the high and low
rail. The variation ofvforce with curve radius can be quite
different even for trucks that are fairly similar in limiting
lateral force levels. For example, for the rigid truck, wheel/
rail forces are required for negotiation of all curve radii.

For the creep guidance range (no flange contact) these wheel/rail
forces are proportional to curvature (1/R), and the angle of
attack is zero. Flange contact occurs at 1304 feet. 1In contrast,
the wheel/rail forces for the guided steering trucks are zero in
the creep guidance range since the axles align themselves radial-
ly and contact with the high rail does not occur until 435 feet.
For any truck, the total wheel/rail force is composed of the
flange force and the lateral component of the saturation force,
uN. This saturation force for the rigid truck acts in a direction

more normal (80°) to the rail than for the guided steering truck
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(57°) or for the compensating truck (35°).
For the radial truck (Figure 11), the creep region is identi-

cal to that of the rigid truck, as the bending spring Kw does not

deform. The high rail is reached at the same radius of 1304 feet.
-For smaller curve radius the ideal radial truck moves along the
high rail and offsets the increasing track curvature by orienting
the axles to an oversteered position. Force saturation for the
ideal radial truck occurs at 217 feet (same as for the compensa-
ting guided steering truck).

The parallelogram truck (Figure 11) flanges at the mildest
curvature of any of the trucks studied, namely tangent track. The
buildup of wheel/rail force with curvature is somewhat slower than
for the rigid truck with force saturation reached at about 1000
feet with a limiting lateral wheel/rail force of 1.0 uN. For
R<435 feet, when the spring loaded stops are applied, the limiting
wheel/rail force rises to 1.7 uN due to the greater interactionr
of the trailing and leading axle.

The limiting flange force for the various trucks is shown
in Figure 1Z2. 1In terms of minimizing flange force,‘the compen-
sating guided steering truck and the ideal radial truck are obvi-
ously best since curve traversal is possible without flange force.
The remaining trucks all reach about the same limiting flange force
of 2.7 uN. However, the curve radius at which these flange force
levels are reached can be quite different as is the rate at which
the flange force buildup occurs. For example, the guided steeT-
ing truck besides traversing a curve three times sharper than for

the radial truck without flanging (435 feet vs 1304 feet) also
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builds up flange force at a slower rate. The rate of increase

of flange force with curvature for the guided steering truck is
1/3 the rate for the rigid truck (due to the (1+h2) factor in the
equations). The saturation radius for the rigid truck is about
750 feet versus 250 feet for the guided steering truck. Although
the guided steering truck can traverse curves without flanging
for radii one-third that for the rigid truck, once flanging takes
place both trucks will eventﬁally reach about the same limiting
flange force. The effect of conicity omn flange force and W/R
force is given in Table 1 and the rigid truck appears to be
relatively insensitive to conicity effects. However, for é&lin—
drical wheels (o=0), the rigid truck (and the guided steering
truck) flanges for all values of curve radius.

The parallelogram truck flanges for all track curvatures,
including tangent track. The flange force builds up linearly
with curvature until saturation occurs at 1000 feet, with a limi-
ting flange force value of 2.0 puN. For radii sharper than 435",
which is the value at which the trailing axle flange clearance 1is
taken up, the truck will collapse unless spring loaded stops are
used to maintain static stability. This causes greater interaction
between the trailing and leading axles, leading to an increase of

flange force with a l1imiting value of 2.7 uN.
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TABLE 1. LEAD~-AXLE LATERAL~SATURATION FORCES FOR RIGID TRUCK

RIGID TRUCK FORCES

Wheel Taper a =0 o = ,2
Flange Force 2.76uN 2.74uN
Hi Rail W/R Force 1.80uN 1.74uN
Lo Rail W/R Force 0.96uN 1.0 uN
Curve Radius

at Saturation 1095 750 feet
(u=0.5)
Curve Radius at

Flange Contact All 1304 feet
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CONCLUSIONS

This work presents techniques and solutions for predicting
bounds for wheel/rail forces and flange forces for several types
of rigid and flexible trucks in steady state curving conditions.
The analysis provides closed form relations for estimating forces,
truck angle of attack and sliding conditions as a function of truck
geometry and track parameters. Limiting case transit truck con-
figurations are analyzed and compared to provide an estimate
of the benefits in curving performance that can be achieved by
modifying truck geometry and parameters. These limiting configu-
rations include:

1. 1Ideal rigid truck

2. 1Ideal parallelogramming truck

3. TIdeal radial (self steering) truck

4, Tdeal guided steering truck

5. Compensating guided steering truck

For the parameters used in the numerical study, the follow-
ing relative comparisons can be made between the trucks analyzed:

i) Only the two types of guided steering trucks analyzed
are capable of steady state curving without wheel/rail force
(R>435 ftj).

ii) In terms of limiting wheel/rail force on the high rail

for R<435 feet, the rigid, parallelogram and guided steering trucks
produce about the same force levels. The compensating guided
steering truck and ideal radial truck have a limiting wheel/rail

force on the high rail factor of three less than the values of
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the other trucks. For R>435 feet, the parallelogram truck has a
maximum value 40% less than its limiting wheel/rail force for
R<435"'.

iii) In terms of limiting flange force the trucks produce

about the same force level, except for the compensating guided
steering truck and ideal radial truck which traverse the curve
without flanging by adopting an oversteered position. For R>435
feet, the parallelogram truck has a maximum value 37% less than
its limiting flange force for R<435 feet.

iv) In terms of track curvature that the trucks can tra-
verse without force saturation occurring, the trucks can be
ranked from lowest to highest curvature as parallelogram, rigid,
guided steering, compensating guided steering, and radial. The
parallelogram truck reaches a radius of about 1000 feet when
saturation occurs, whereas the compensating guided steering truck
and ideal radial truck can traverse a radius as low as 217 feet
before force saturation occurs.

These results and comparisons are typical of the design
uses of the tools developed in this work. Design choices involv-
ing trade-offs between curving performance and dynamic stability
considerations are also useful and some details are given in

Reference [2].

38



REFERENCES

Weinstock, H. and Greif, R., "Analysis of Wheel/Rail Force

and Flange Force During Steady-State Curving of Rigid Trucks,"
DOT-TSC-UMTA-80-26, UMTA-MA-06-0025-80-8, Interim Report,
September 1980. (Also ASME Paper No. 81-RT-5, presented at
the Joint ASME/IEEE Railroad Conference, April 1981.)

Bell, C.E., Horak D., and Hedrick, J.K., "Stability and
Curving Mechanics of Rail Vehicles," ASME Paper No. 80-WA/
DSC-15, presented at Winter Annual Meeting of ASME, November

1980.

39/40






APPENDIX A
ALTERNATIVE CALCULATION OF MAXIMUM FORCES FOR RIGID TRUCK

In the body of this report, the investigation of the 1limit-
ing force levels on the wheels of the lead axlie is done with the
assumption of slipping of both the front and back wheels in the
free curving region. The resulting calculation (e.g., equations
(9) and (10)) is somewhat tedious due to the dependence of yaw
angle on curve radius. A simpler approach is to assume the rigid
truck is in the constrained curving region (which fixes ¢ as a
constant) and then use an asymptotic analysis for small R. 1In
this Appendix, the rigid truck will be analyzed in this manner and
it will be shown that the value of the flange force is less than
that found from equations (9) and (10) associated with the free
curving region.

For the constrained region, it follows from (7)
Y = q/hL. (A-1)

Considering Figure 2 with a flange force acting on the trailing

axle at the low rail leads to the following equilibrium rela-

tiomns,
}:P: F - F = 2uNsinB + 2uN siny,
€1 g2
2:5& F = - 2uN siny + %? (cosB + cosvy). (A-2)

)

The trigonometric terms, and the associated asymptotic values for

small R, are
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‘/(‘R‘ T R ™ T
sinB ~ —__h , Cosg ~ 1
‘/1 + hZ 1 + K2 (A-3)
hg
: R "V
siny = 5
hy{ 2 [ _ 2
T - ) + <§ ?; {q 2h2w}>
siny -~ h , COSY ~ 1
‘/1 + h? 1 + h?

Substituting these relations into (A-2) leads to the following

limiting value of flange force,

2uNsinp + %? (cosB + cosy)

F
g1

N

3

2.45uN

This 1imit is less than the value of 2.74uN obtained from free
curving assumptions analyzed in the text. Further analysis of
limiting values can be done from the equations derived in this
Appendix by parametrically letting the radius R increase in

value while maintaining ¢ as constant.
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APPENDIX B

PARALLELOGRAM TRUCK: MINIMUM STIFFNESS REQUIRED
TO MAINTAIN EQUILIBRIUM FOR FREE-CURVING REGIME

As discussed in Section 3, the parallelogram truck with
pinned connections can maintain static equilibrium as long as the
trailing axle flange clearance is not taken up, i.e., R > rol/aq.
For sharper curves, R < roz/uq, spring loaded stops (modelled as
torsional springs) must be used to maintain stability in the free
curving region. The PVW can be used to verify and derive equili-
brium and stability conditionmns.

Consider the parallelogram truck shown in Figure (B-1) at a
warping angle ¢ and yaw angle Y* with creep forces acting. The
yaw angle y* is defined as the deviation from the yaw angle h&/R
which the axles attain when both axles are at the high rail, as
defined by equation (19). The warping angle @& is defined as the
deviation in warping angle from that attained when both axles
are at the high rail. Arbitrary virtual displacements &% and &§y*
are considered from the equilibrium position of the truck in:free
curving (i.e., for these purposes, the truck is considered pinned
to the high rail at A). The IVW done by the torsional springs

through 6@ is

IVW = (4K3)éo , (B-1)
and the EVW done by the creep forces through 8% and S§y* is
EVW = - (2£f9*) (2he) (8@ + Sy*)
+ zfsz(i,fZ oy >6¢* £ 2fz<§ - q)&b*. (B-2)
T, 2 R T,
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FIGURE B-1. CREEP FORCES ACTING ON PARALLELOGRAM TRUCK
WITH SPRING-LOADED STOPS
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Equating IVW to the EVW leads to

4(Ke + hefy*)so - 2fz<%% - = {yz + q} - 2h@*)5¢* = 0. (B-3)
: (6]

Since the virtual displacements are arbitrary, it follows that

each term in parentheses must vanish. The first term produces

© = - IEE g - (B-42)

This relationship can be used to define the minimum spring stiff-
ness required for stability in the free curving regime. For the
parallelogram truck in free curving, the position of the rear
axle, Yo in terms of the lead axle can be written as
y, =a - Zha(e + 9%),
(B-4b)

Y, = q (at high rail).
max

By substituting the relationship between warping angle ¢ and yaw
angle ¢* from (B-4a) into (B-4b), the minimum stiffness K for the

torsional springs is found to be
K > fhe - (B-5)
The equilibrium relation defining the yaw angle ¢* is obtained by
setting the second parenthesis in (B-3) to zero
2r |
¥y = - q+—aﬂ(-§-hw*), (B-6)

and then using (B-4a), and (B-4b),

pE = P/R - oalT, (ak/r_ < 1)
: - al a? fht
106 Copies h(l e + ?; -K—> (B-7)






